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A variational principle of mmdmmn dissipation of mechanical energy is proposed for constructing the governing equations of 
elastoplastic flow for thfite deformations, based on the assumption that part of the dissipation is due to a change in the tensor 
of the internal vatiable~ The required equations are obtained for the isothermal process by using a previously proposed subdivision 
of the complete metric tensor into elastic and plastic parts (but without invoking the idea of the rate of plastic deformation). 
The system of differential equations includes the equations for the tensor of the internal variables. 

The governing equations for elastoplastic media with finite deformations were obtained in [1] which ensured that 
the subdivision of the total deformations into elastic and plastic parts and the stress tensor were independent of 
the deformation path in the elastic region. The idea of  a rate of plastic deformation and of an objective derivative 
of the tensor with respect to time was not postulated. The Mises principle was used to close the system of equations 
for an active load, and a definition of  the rate of  plastic deformation was introduced which it was proposed to use 
to record the kinematic equations of the parameters of  the history. However, for finite deformations there is not 
a sufficient basis for using the Mises principle, in particular, in view of  the existence of  different poss~ilities of  
introducing the idea of the rate of  plastic deformation [1, 2]. Some definition of  the rate of plastic deformation is 
also introduced into approaches which do not use the Mises principle [3]. 

Suppose the interual e n e r ~  per unit mass U ffi U ( E ,  G, S, K) depends on the metric tensor of total deformations 
G, the elastic-defomtation tensor E, the entropy per unit mass S and a certain tensor of the internal variables 
which will be defined below. The notation used to represent all these quantifies is identical, unless otherwise stated, 
with that used in [1]. References to the formulae derived in [1] are used. Inside the loading surface q)(E, G, S, )c) 
ffi 0 the tensors G and E satisfy the equations [1] 

G" + G . W + W r  . G = O, W = ~v /~x  

E ' + E . W - R . E = 0 ,  ( . ) '=v .~ ( . ) /0x+~( . ) /0 t  (1) 

where v is the rate of deformation vector, and the antisymmetric tensor R is determined by the symmetry conditions 
of the tensor E (see (8) in [1]). 

It is natural to as~Jme that the law of  variation of the second-rank symmetric tensor K in the elastic region is 
identical with the law of variation of the plastic-deformation tensor P (see ( 1 ) and (9) in [ 1 ]), i.e. it can be reduced 
to the same orthogonal transformations 

~" = R . t t -  t: . R (2) 

The last equation ensures that the tensor tc is independent of  the unloading path and satisfies the requirement 
of  objectivity, i.e. it i.,; invariant under rigid rotations. 

Suppose the change to a rotating system of coordinates is described by the orthogonal tensor Q 

d x ' = Q . d x ,  Q . Q T = I  (3) 

Using the law of  wtrintion of the distortion tensorA = ~ on changing to a rotating system of coordinates 
A = A ' .  Q ,  whereA" = ~toFdx', and Eq. (16) [1]:A" + A .  W = 0, we obtain (A')" + A ' .  IV" =0 ,  where 

W ' = Q . W - Q T + Q "  .QT 

From (4) and (8) [1] we obtain the law of transformation of the tensor R 

R ' = Q . R . Q T  + Q . . Q  T 

(4) 

(5) 
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Using this equation we obtain 

0c')" + 1<' • R'  - R'-K" = Q .(K" + t¢- R - R • Ic) • Q'r (6) 

where ~ = Q,  ~. QT which also proves the objectivity of Eq. (2). We can similarly show that Eqs (1) are objective. 
The law of  conservation of  energy for the case of  a zero-moment medium and when there are no mass forces 

can be represented in the form 

pU" = o -. W T - I .. 0q/Bx (7) 

where o is the Cauchy stress tensor, p is the density of  the medium, and q is the heat-flux vector. Equation (7) can 
be written in terms of the free energy F(E, G, T, !c) = U -  TS (where TIS the absolute temperature; here the function 
F is not identical with the similar function in [1], since in [1] F -- F(E, P, T) in the form 

TS + F~..(K" +;c.R-R.Ic)+I(I..~_--~q ~= D; S= ~F - 0 ~  (8) pk ,~7 

I 
D = =ft..W" - F G • .G" - F E ..E" + F~ "Oc" R- R.;c) 

P 
(9) 

Here F~ = aF/a~ FE = ~F/-dE, Fo = ~F/'dG are symmetric second-rank tensors and D has the meaning of the 
power dissipated per unit mass, which is made up of the power of the internal heat sources TS" + p-lI • • 
and an addition F~ . .  (;c" + ic. R - R .  lc) which has the meaning of the energy expended in unit time in adjusting 
the internal structure of unit mass of an element. Hence, we have postulated the possibility of  introducing a tensor 
!c such that this energy can be expressed in this way. This can be regarded as a definition of the tensor 

Both these components of the power of mechanical-energy dissipation were determined experimentally in [4], where 
it was noted that existing versions of flow theory give an adequate description of  this process for finite deformations. 

The condition D = 0 for any processes inside the loading surface defines the relation between the tensor o and 
the state parameters E, G, T, r,. 

The condition for the functional 

'l odt (10) 
f |  

to be extremal enables us to obtain equations for E, T and tc in the active region. 
Suppose an element of the me.Aim is unloaded. Then, using (1), (2) and (8) of [1], expression (9) for the power 

dissipated can be converted to the form 

D = [p-l(O - oi) + 2(G • F G + E. FE + w,. F~c) a] .. W "r (II) 

O l = -o{E- F E + 2G" F G + 2( .I i J2 - "13)-I [~pa. (j2 E_ Jl Ex ) + E" eP a. E 2 ]}c (12) 

:pa = -(2~ " F~ + E" Fg) a (13) 

JI=I"E, J2 =I(j2-E"E), .13 "I(I"E3 +IJI3-3JIE"E) (14, 

The superscripts c and a denote the symmetric and antisymmetric parts of the tensor, respectively. Since the 
condition D = 0 must be satisfied for any rate of deformation IV, we have 

o - o1(E, G, T, ~:), (G- Fc + E. FE + ~" F~) a = 0 (15) 

Here we have taken into account the requirement that the tensor e must be symmetric. Using the last relation 
from (13) we have • = E- FE + 2G. FG, so that the derivatives of the free energy with respect to the components 
of the tensor ic are eliminated from the expression for o. The requirement that the streasea must be zero when 
there are no elastic strains (E = 1) and at standard temperature (T = To) leads to the condition O~_, LT__ , T0 = 0. 

Using the Cayley--Hamilton identity E 3 - J1 E2 + J2E - J3I = O, expression (12) for the stress tensor can be 
converted to a form similar to that derived in [1] 

o = -p(JI  J2 - J3 )-I [(j2 + J2 )E. -FE" E + JI J3"FE + E2" FE" E2 - 

- J3 (E. F~ + PE. E)-J~ (E. ~ .E2 + ~2 "HE "g)] (16) 

HE - 0P /0E-  rE +e-~ .C.r~ +Fc-G'E -~ (17) 

Equation (16) is identical with (13) of [1] ffwe make the replacement F--~/~, where F = F(E, P, T, to) =-- F(E, 
E.P.E,T, tc). 
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Consider active loading. Assuming that the relationship between the stresses and the strains (15) also holds in 
this case, we have from the first relation of (1) and (9) 

D = - F e  .. (E" + E. + E W  - R .  E)  (18) 

The equations for E, K and T are obtained from the requirement for the functional (10) to be a maximum in 
any time interval of  the active process under the conditions 

"tf  TS" + F~..(K +K.R-R.K)+~( I . .~x) -D=O 

ip(E, G, T, K) = op(E, G, S(E, G, 7", J¢), ):) = 0 

(E"  W -  R . E) a = 0 

(19) 

(20) 
(21) 

Equation (21) defines the relation (8) [1] between the tensor R and E and W. Its inclusion in the above conditions 
enables us to avoid the fairly lengthy differentiation of the tensor R ( E ,  IV) w i t h  r e spec t  t o  t he  components of the 
tensor E. 

Hence, it is required to obtain an unconditional extremum of the Lagrange functional 
t2 
f L ( t )d t  
tl 

where 

L(t )  = D - ~,~p - x,~ - A .. ( E .  W - R . E)  (22) 

and A is an antisynmletric second-rank tensor. Variation is carded out with respect to the variables E, r ,  T and R 
assuming that G, W.'md &lfJx are given functions of time. 

In this paper we will confine ourselves to the cases of an isothermal pro~ss,  in which we case we have 

L = - F E "  (E" + E "  W -  R .  E ) -  k i p -  A .. (E"  W -  R .  E)  (23) 

when the condition % ffi 0 defines the influx of heat to the element required to maintain the specified temperatux¢. 
The tensors E, K A must satisfy Euler's equations 

, '  <, 
o--7: OR ' ~-D- o~ 

When varying the :fitmctional the quantifies E(/1) = El, E(t2) : E 1 are assumed to be given, while the t ensor  K 
is not fixed at the inst~mts of time tl and t2. Since the function (23) is independent of ~', the transversatility conditions 
are satisfied automatically. 

Consider the condition ~ L / ~  = 0 

~2F ~ 
~ - ~ i j  ( E" + E" W -  R" E)i j  + ~,"~K = 0  (25) 

This equation defines the elastic strains in the active region only if the fourth-rank tensor ~2FfOrugE is not equal 
to zero identically, i.e. if, in the expansion of the free energy, there is a dependence on the mixed invariants E and 
i¢. We can assume that in this case 

K = ):(F E, E,  G,  7") 

Using the last relation we can change from the loading function ~(E, G, T, K) to the function 

¢pl(E, G, T, F E) =- ip(E, G, T, )c(F E, E, G, 7")) 

T h e n  

(26) 

(27) 

and from Eq. (25) we, obtain an equation for E for active loading 

E" + E . W - R . E + ~ ( p l / O F E  = O (2s) 
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Since the third equation of (1) satisfies the objectivity principle, Eq. (28) also satisfies this principle. 
The last equation of (24), taking into account relations (27) and (28), gives 

F" E - [w.  (FE + A) - (FE + A)- RF - ~cp~/SE = 0 

Using (4) and (5) we can show that this equation is objective. 
Finally, from the condition aL/~R = 0 we obtain the following equation for determining A 

A . E  + E .  A = F E - E - E . F E  

which is identical in structure with (7) of [1]. Its solution has the foim 

A=(JIJ2-J3)-I[(FE.E-E.FE)J2 +(E2.FE-FE.E2)JI-E2.FE.E+E.FE.E 2] 

(29) 

(3o) 

0 1 )  

Equations (1) and (28)--(30) together enable us to follow the change in the variables G, E and !¢ for given rates 
w(t). 
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